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ABSTRACT

A number of important problems in applied mathematics can be reduced to find-
ing stationary values of functionals (maxima, minima, and critical values). For
functionals defined in terms of integrals, the method of interval integration pro-

vides a way to obtain interval (two-sided) bounds for these stationary values. As

i

a special case of this method, upper and lower bounds for eigenvalues of linear

operators can be obtained. The inclusion of stationary values in intervals is

-

based on the use of interval functions which include the function for which the

functional is stationary, and its derivatives. A simple way to construct such

FOTR ey

interval functions is given, and examples are presented of a minimum and an eigen-

value problem. The improvement of initial results by iteration is indicated.

AMS (MOS) Subject Classifications: 49-00, 49A29, 49G05, 34B25, 35P15, 45C05,
65Gl0o, 65K10, 65L15, 65N25

Key words and phrases: Calculus of variations and control theory, Variational
problems, variational inequalities, Two-sided bounds for
stationary, maximum, minimum, critical values of functionals,
Lower and upper bounds for eigenvalues, Interval analysis,
Interval integration

Work Unit Numbers 1 and 3 (Applied Analysis and Numerical Analysis & Computer Science)
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SIGNIFICANCE AND EXPLANATION

Solutions to many problems in physical mathematics and applied analysis can
be found as maxima, minima, or other critical points of certain functionals de-
fined in terms of integrals. Such points are called stationary points of the
functional, and include, for example, eigenvalues of linear operators. The solu-
tion of these so-called variational problems by scientific computation can be im-
proved, in many cases, by the use of interval integration, which yields two-sided
bound (that is, lower and upper bounds, or simply interval bounds) for stationary
values. In order to apply this method, one needs a set of interval functions
which enclose a function for which the functional is stationary. A way to con-
struct such interval functions, using the boundary conditions and reasonable
assumptions on the highest derivatives is given, and the possibility of obtaining
improved bounds by iteration is indicated. The use of interval methods has the
additional advantage that interval values can be assigned to the boundary condi-
tions, so that problems in which the boundary conditions are not known precisely
can be studied, or the response of a system to a range of conditions can be

estimated.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.
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INTERVAL BOUNDS FOR STATIONARY VALUES OF FUNCTIONALS

L. B. Rall

1. variational problems. A number of important problems in physical mathe-

matics and applied analysis, particularly the calculus of variations and control

theory, reduce to finding maxima and minima of functionals
(1.1) f=£flyl, y €A,

where A is the class of admissibfe functions for the problem. In addition to the
extremal values

min max
=

(1.2) f YGA{f[yl}. f-yeA{f[y]),

of £, one may seek its caitical values

(1.3) f* = fly*],

where the critical point y* € A of f satisfies the Euler equation
(1.4) £'iy) = 0,

it being assumed in this case that the GAteaux derivative f' of £ exists on A [5).
Under this assumption, extremal points y,y € intA such that £=£yl, £ = £(y)

will be critical points of f [2). For simplicity, extremal and critical points and
values of a functional will be called its Atauona)ty points and values, respective-

ly. A variational problem for £ on A is to find one or more of the pairs (£.y),

sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(£,¥), (£*,y%), if such exist.
An interval bound for a stationary value £* of a functional f is simply an

interval (a,b] such that £+ € (a,b], that is,
(1.5) ast* b,

For functionals defined in terms of integrals, such as

*

(1.6) £lyl = [ E(X,¥09' ¥ 0eee0y

*o

®)yax, y €A,

it will be shown that the method of interval integration [1), (4], provides a
way to obtain interval bounds for stationary values of f. In the variational
problem for f defined by (1.6), the class A of admissible functions is usually
characterized by continuity, differentiability, and boundary conditions on y.
It should be noted that one-sided bounds for extremal values are easy to

obtain: PFor arbitrary ¢ € A, one has
(1.7) £SE[(9] s T

Lower bounds for minima and upper bounds for maxima, however, are often not easy
to obtain, and in the case of nonextremal stationary values (such as intermediate
eigenvalues of a linear operator), one is often completely in the dark. The two-
sided bounds (1.5) furnished by interval integration are easy to compute, by con-
trast, as will be seen below. The methodology will be developed for functiocnals
of the form (1.6) for clarity, and its immediate extension to several independent
variables will be presented in the final section.

2. Interval integration. Interval analysis (3] is the branch of mathematics

which takes real bounded intervals [a,b) as its basic units, and studies trans-
formations of them. 1Its relatianship to real analysis is somewhat analogous to
that of complex analysis, since the reals can be identified with the subset of
intervals which have equal endpoints, the so-called degene/tate intervals x = [x,x]

for real x. An (nterval function Y of a real variable x assigns the interval
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[x(x).;(x)] to each x in its interval of definition X = lxo,xll. The interval

integral of Y over X is the interval

xl xl
2.1 [Y(x)dx = (D) [ yx)ax , () [ y(x)ax],
X b2
*o *o

where (ILD) and (UD) denote lower and upper Darboux integrals, respectively [1}.
Since these Darboux integrals exist for all real functions, it follows that all
interval functions are integrable, and hence integration is a universal operation
in interval analysis [1]).

In the study of interval transformations, the transformation T of X into T(X)
is said to be monotone if x C 2 = T(X) C T(2), and a transformation U {ncludes
T on X if T(X) C U(X), in particular, if y is a real function, then the interval

function ¥ includes y on X if
(2.2) y(X) = {y(x) | x € x} C¥(X)

[3). 1In this sense, the interval function Y is the set of af{ real functions y
such that y(x) < y(x) < ;(x) for x € X, and one writes y € Y in this case. The
intexrval integral (2.1) is a monotone function of its integrand (1], so that

*) Xy

(2.3) J yodxC [ y@mdax for y €y,

xo xo

whether or not y has a real (Riemann or Lebesgue) integral. The real interval
of a real function, if it exists, is of course contained in its interval integral,
which always exists [1), [4). The calculation of the interval integral of Y is

simplified if the endpoint functions y,y of Y are Riemann (R) integrable. Then,
(2.4) Jrmdx = (R) [ yooax , (R)J'x yix)),

so that inclusions of interval integrals can be computed for integrands 2 2 Y

with Riemann integrable endpoint functions [1].

N s 4
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3. Interval bounds. Considering the integrand of (1.6) to be a fu...ion
f(x,uo,ul,...,un) of n + 2 variables, an interval inclusion F(X,Uo,ul,...,un)
of it can be constructed by interval arithmetic [3]) or otherwise. Then, interval
integration provides the following result.

Theorem 3.1. Suppose that § € A is a stationary point of the functional £

defined by (1.6), X = £{9] is the corresponding stationary value of £, and the

— e e e a———

(i .
interval functions Yo, Yl, ceey Yn on X = [xo,xll are such that ¢ ) € Yi, i =
: ; 0,1,...,n. Then,

*

(3.1) A € [a,b) = f F(x,Yo(x) ,Yl(x),...,Yn(x))dx.

%0

This result provides the two-sided bounds (1.5) for A immediately. It ap-
pears, however, that one must assume a lot about ¢ and its derivatives to use
(3.1). In many cases, ohe only has to assume something about y‘“) (for example,
that it is bounded), and then the interval functions Yn-l’ cees Yl' YO can be
constructed by use of interval integration and the boundary conditions. For ex-

ample, suppose that

(3.2) y™ v "V € a8, vV ) € a8

Note that .(nterval boundary conditions can be prescribed. Thus, interval tech-
niques can be useful in practical problems in which boundary conditions are not
known precigely, or in which it is desired to study the behavior of a system over
a range of boundary conditions.

Indefinite interval integration of (3.2) gives the functions

x X
(3.3) Y ) = [a,80] + [ ¥ (that, ¥ (x) = fa),8,] + £ Y (t)de.

*o 1

Definition 3.1. The interval function ¥, is said to be admissible for

d .
the boundary conditions (3.2) if [al,ell € YL(xl), [uo,Bol € YR(xo) , and the
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intersection YL(x)fTYR(x) is nonempty for x € X.
Theorem 3.2. If the interval function Yn is admissible for the boundary

conditions (3.2) and 9™ € Y_, then
(n-1) e -
(3.4) 9 AR L

Proof. By construction, the interval function Yo defined by (3.4) con-
i i ' € €
tains all real functions g such that g' € Yn, g(xo) [ao,eo] and g(xl) [al,sl],
as a consequence of the definition of the indefinite interval integral (1). QED.

It should be noted that Yn constructed in this way also contains other

-1
real functions which satisfy the boundary conditions, but may have no continuity
or differentiability properties at all. An example of the actual construction

of an interval function of this type is given in the next section.

4. The simplest problem of the calculus of variations. This is the case

n=1of (1.6) [2], and to simplify matters further, the boundary conditions

4.1) y(xO) = Yqr y(xl) =Y,

will be imposed. The class A of admissible functions will be restricted to those
for which y' is bounded, that is, y' € [g,ﬁ], where m,m denote constant interval

functions with the corresponding real value. Interval integration gives
(4.2) YL(X) = yo + [m,m] (x - xo)' YR(x) =Y - m,m] (x - xl).

and thus Yl = [g,ih is admissible for (4.1) if

- Yy - Y
(4.3) assm' m-%’.'
xl xo

The graph of the corresponding interval function Y_ is thus a parallelogram with

0
vertices (xo,yo) and (xl,yl), bounded above by the intersecting lines

(4.4) ?L(x) =y, * mix - xg) s -y-R(x) =y, - mx - x),

and below by

. sy
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(4.5) xL(x) =y m(x - xo), 1R(x) =y - m(x - x).

Using this interval function Y one has immediately that

o'

*

(4.6) fiyl € [ p(x,votx).[g,El)ax
X
[o}

on the class A of functions satisfying (4.1) for which y' € [E';l' For example,
suppose that

X
1
4.7 £yl = [ /T + (y)Zax,
x
0

and one seeks )\ = min f(y] on A. Since

(4.8) (v"? € (0,max{w’®n°}],
which gives
*y
- - mldx = - 2 iy Z
(4.9) \€ (x, - xy,d], d xj 1+ mlax = Vlxg = x )%+ (y, = y)%
(o}
since each admissible Yl contains y' = m, and thus each \'o contains the degen-

erate interval (real) function
(4.10) yn(x) =¥, + m(x - xo) ,

for which the value F[y-l = d is attained, so that A < d. The lower bound in

In

(4.9), A = x. - x4, can be attained by a step function s € Yo if0€Y

1 1’
variational problems, additional restrictions are often imposed on the elements
of !0 (continuity, boundedness of derivatives) to eliminate solutions such as
this, and one works with the functions in Yon A [2); in this class, however,
two-sided bounds may not be available as they are in interval analysis.

$. Eigenvalue problems. For selfadjoint linear operators A in a Hilbert

space H, its eigenvalues are critical values of the Rayleigh quotient
(5.1) Rly) = (Ay,y)/(y,y}, y # 0.

An eigenvalue ) satisfies the Euler equation

-6 -




(5.2) Ay ~ Ay =0, y¥ O,

and the corresponding critical points y in a function space H are called eigen-
R functions of A belonging to A [2). If the inner product ( , ) in H is defined

in terms of integrals, then interval integration can be applied as above to find

‘ lower and upper bounds for eigenvalues of A. 1If Yo, Y). are interval functions
such that ¢ € YO' 0 & Yo' and Ag € Y, for some eigenfunction ¢ of A, then
) (5.3) A € (Yl.Yo)/(Yo.YO) = [a,b]

. for the corresponding eigenvalue A, thus giving an interval bound. Once again,

the interval functions YO , Y are to be determined in some way, perhaps on the

1

basis of an approximate solution of (5.2). 1If A is an integral operator, then

one may use interval integration to get Yl = AYO. On the other hand, if A is a

differential operator, it may be possible to obtain YO from Y, by use of interval

1

integration and the boundary conditions, as before. For example, suppose that
(5.4) Ay = -y", y(0) = y(m = 0.

Since eigenfunctions are determined by (5.1) and (5.2) only up to a multiplicative

constant, it is useful to introduce a normalization condition which excludes y = 0

.o

: in particular. In this case, suppose that -y"(w/2) = 1, and take Yl defined by
3 (5.5) y00 = [0,1), y;(x) =1, 0<x<m, ¥y(m = [0,],

%, (;1 (x) is an interval step function (1}), and

-

ks

% (5.6) Yy (x} = (2/m)x, 0 s x < w/2, y, = 2/m(n - x), n/2 S x < W,

By integrating Yl(x) twice and using the boundary conditions in (5.4), one gets

YO defined by
(5.7 7o(x) = 32‘-(n -x%, 0<x<m,

S and
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(5.8) xo(x) =

Computation with these interval functions gives

n3 1 "S 17
{5.9) (Yl,YO) = ?[g: ]1 (YO,YO) = H).[E' 1] ’

N

and thus eigenvalues A belonging to eigenfunctions § € Yo will be elements of the

intenval Rayleigh quotient (Y,.¥g)/ (¥ ,¥0), that is,

20,1 21
AE AN = &L 24 ¢ .
(5.10) o~ 2 ' 171 {0.4052, 2.5033]
In this case, ¥(x) = sinx is the only eigenfunction of A contained in Y_, and

o]

(5.10) provides lower and upper bounds for the corresponding eigenvalue X = 1.

The endpoint functions (5.5) are crude approximations to sinx, and it can be
noted that (5.7) and (5.8) define an interval function which, when normalized,
is smaller than Yl and bounded by better approximations to the eigenfunction. This
suggests an iteration process, the next step being to take (2/11)2Y0 = Yl as a new
interval function containing -y", which leads to an improved YO and a corresponding
value I\1 for the interval Rayleigh quotient. Indeed, if Al C AO, then the exis-
tence of an eigenvalue A € Al of A is guaranteed by the Schauder fixed point theo-

rem [5].

6. Variational problems in several dimensions. The extension of Theorem 3.1

to problems in several independent variables follows immediately from the corres-
ponding extension of the interval integral. In RV, let x = (51,52,...,£v), and
the region of integration be denoted by . Following the prescription given in

{1], partition Q by elements Ql, Reoreeey Qm with measures (areas or volumes)

2
dﬂi, i=1,2,...,m, and let

_ , inf sup
6.1) vvi = { xeﬂi{v(xﬂ , xeﬂih{(x))l,

-8 -




where Y is an interval-valued function defined on Q. If Dm denotes the set of

of all partitions of 2 into m subregions, then

(6.2) L =
m

J v.edq,, m=1,2,3,...,

n o
D -1 * *
m
form a nested sequence of closed intervals, and thus the interval integral of
Y over Q,
(6.3) f.ymae = n &

Q m

m=1

exists for arbitrary Y. It is not difficult to show that this interval integral
is an inclusion monotone function of its integrand, using the same arguments as
in {1}.

Now, one can let Di denote the vector of partial differential operators of

order i in Rv, for example, D1 = (3/351,3/352'---,3/3£V) and consider the func-
tional
(6.4) £ly) = [o£(x,y,D¥/Dy,....,D y)dQ,

which is the analogue of (1.6) in RV. If F is an interval inclusion of the inte-
grand of (6.4), and X = f{¢] is a stationary value of f, then interval integration
provides the following result.

Theorem 6.1. If ¢ is a stationary point of f and interval vector functions

YO' Yl, ey Yn exist such that Di9 € Yi' i=0,1,...,non 8, then

{6.5) A= £[9]) € IQF(x,vo(x),vl(x),...,vn(x))dn.

As an application of this theorem, suppose that in R3 the values of y are

prescribed on the boundary 3Q of a region @, and one wishes interval bounds for

(6.6) X = min jﬂ(azy/agz + 3%y/0m% + 3%yt an




I over some class A of admissible functions. A construction similar to the one
3 in §3 can be used, or Yo can be constructed on the basis of an approximate solu-
' tion of the Euler equation for (6.6), which in this case is simply the Laplace

equation

(6.7) dy = 0, y = YO on 3N.
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